机器学习之条件随机场(CRF)

什么是CRF

CRF即条件随机场(Conditional Random Fields),是在给定一组输入随机变量条件下另外一组输出随机变量的条件概率分布模型,它是一种判别式的概率无向图模型,既然是判别式,那就是对条件概率分布建模。

CRF较多用在自然语言处理和图像处理领域,在NLP中,它是用于标注和划分序列数据的概率化模型,根据CRF的定义,相对序列就是给定观测序列X和输出序列Y,然后通过定义条件概率P(Y|X)来描述模型。

CRF的输出随机变量假设是一个无向图模型或者马尔科夫随机场,而输入随机变量作为条件不假设为马尔科夫随机场,CRF的图模型结构理论上可以任意给定,但我们常见的是定义在线性链上的特殊的条件随机场,称为线性链条件随机场。

概率无向图模型

前面说到CRF的输出随机变量是一个概率无向图模型,那么现在看看该模型。

概率无向图模型是由无向图表示的联合概率分布,假设联合概率分布P(Y)通过无向图来表示,则在图中节点表示随机变量,边表示随机变量之间的依赖关系,联合概率分布P(Y)满足马尔科夫性则称其为概率无向图模型,或者是马尔科夫随机场。

如下图,图是一个由节点和边组成的结构体,无向是指边没有方向,整个图记作G=(V,E),其中V为节点的集合,E为边的集合。

超人汪小建(seaboat) CSDN认证博客专家 seaboat
公众号:【远洋号】,笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢编程、绘画、看书、写作和运动,擅长素描、篮球、跑步、游泳、健身和羽毛球等运动项目。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》、《图解Java并发原理》、《人工智能原理科普》。
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付 79.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值